Differential Equations
释义 Definition
微分方程:一种包含未知函数及其导数(变化率)的方程,用来描述随时间或空间变化的过程(如运动、增长、扩散、振动等)。常见类型包括常微分方程(ODE)与偏微分方程(PDE)。
发音 Pronunciation (IPA)
/ˌdɪfəˈrɛnʃəl ɪˈkweɪʒənz/
例句 Examples
We learned differential equations in calculus class.
我们在微积分课上学习了微分方程。
Differential equations help model how heat diffuses through a metal rod over time.
微分方程可以用来建立模型,描述热量如何随时间在金属棒中扩散。
词源 Etymology
differential 来自 differentiate(求导、区分),与拉丁语 differentia(差异)相关;在数学中指“与导数/微分有关的”。equation(s) 来自拉丁语 aequatio(使相等),指“等式/方程”。合起来,differential equations 就是“含有导数(微分)项的方程”。
相关词 Related Words
文学与著作 Literary Works
- Elementary Differential Equations and Boundary Value Problems(William E. Boyce & Richard C. DiPrima)
- Differential Equations with Applications and Historical Notes(George F. Simmons)
- Ordinary Differential Equations(V. I. Arnold)
- Partial Differential Equations(Lawrence C. Evans)
- A Treatise on the Theory of Differential Equations(A. R. Forsyth)